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Front tracking simulations of the Richtmyer-Meshkov instability produce significantly 
better agreement with experimentally measured growth rates than obtained in non- 
tracking computations. Careful analysis of the early stages of the shock acceleration 
process show that nonlinearity and compressibility play a critical role in the behaviour 
of the shocked interface and are responsible for the deviations from the linear theories. 
The late-time behaviour of the interface growth rate is compared to a nonlinear 
potential flow model of Hecht et al. 

1. Introduction 
The quantitative understanding of the Richtmyer-Meshkov (shock-accelerated) 

interface instability has challenged scientists for over 30 years. 
Interest in this instability is motivated by its importance in subjects such as inertial 

confinement fusion and supernovae dynamics. 
The growth of perturbations at a shocked interface between two fluids was first 

studied in Richtmyer’s seminal 1960 paper. In this paper he studied the solution of the 
linearized (compressible) Euler equations and found that after an initial rapid increase 
the growth rate in the linearized solutions oscillated about a limiting value. He also 
proposed an analytic formula for the growth rate based on an approximation to the 
full linear theory. The predictions of the analytic formula, known as the impulsive 
model, agreed quite well with the limiting value of the linear theory. In the time si.nce 
Richtmyer’s work this problem has been the subject of extensive investigation. The 
earliest experimental studies of this instability were performed by Meshkov (1970) 
who measured growth rates that were significantly smaller than the predictions of the 
impulsive model. More recent experiments by Benjamin (Benjamin 1992; Benjamin, 
Besnard & Haas 1993) also showed growth rates that were nearly half the value 
predicted by Richtmyer’s theory. The lack of agreement between experiment and 
theory would ordinarily invalidate the theory. However, perturbation growth rates 
obtained by numerical simulation of experiments have agreed quite well with the 
linear theory (Benjamin et al. 1993; Cloutman & Wehner 1992; Meyer & Blewett 
1972). Other simulations of the Richtmyer-Meshkov instability have also given 
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growth rates very close to the values predicted by the impulsive model in the cases 
studied (several examples can be found in the volumes Besnard et al. 1991; Dannevik, 
Buckingham & Leith 1992; Linden, Youngs & Dalziel 1993), although interesting 
exceptions have been found by Mikaelian (1993) and Yang, Zhang & Sharp (1994). 

In this paper we report progress consisting of substantially improved agreement 
between experiment, theory and computation. Our main tool is the use of the front 
tracking method to carry out highly resolved numerical simulations of certain exper- 
iments of Meshkov (1970) and Benjamin (Benjamin et al. 1993). Comparisons are 
made to measurements of the amplitude and amplitude growth rates of perturbations 
on the shocked interface. The computed growth rates are in excellent agreement with 
those found in Benjamin’s experiments. In the case of Meshkov’s experiments we 
obtain growth rates 60% higher than the experimentally measured values, but this 
still represents a substantial improvement over the results of previous simulations of 
these experiments. 

The results of the simulations raise a number of important theoretical issues aside 
from the matter of agreement with experiment. The first concerns the relationship 
between the nonlinear theory and the small-amplitude theory, derived by linearizing 
the equations of motion. These theories agree for small initial amplitude perturbations 
and sufficiently early times, as expected. For larger amplitudes or later times there is 
an abrupt departure of the nonlinear theory from the linear theory. In $3 we explain 
this behaviour in terms of a re-acceleration of the interface by shocks produced 
by the (nonlinear) self-interaction of the reflected and transmitted waves. Another 
important issue concerns the long-time behaviour of the amplitude growth rate. In 
the simulations the growth rate is found to decay with time. Such behaviour has 
been predicted by Hecht, Alon & Shvarts (1994) on the basis of a nonlinear potential 
flow model for the fluid. Our numerical simulations are in general agreement with 
the results of this model, although they predict a slightly different decay rate. This 
cross-validation is important because the decay of the growth rate is not evident in 
the experiments of Meshkov or Benjamin, although it has been observed in other 
experiments (Aleshin et al. 1998; Meshkov 1992) and simulations (Meyer & Blewett 
1972; Benjamin et al. 1993). 

A third issue concerns the effect of varying numerical parameters. A discussion is 
given on the effect of variations in grid size, artificial viscosity and numerical surface 
tension on the computed growth rate of the instability. 

2. Experimental configurations 
We begin by specifying the experimental configurations which we model. Benjamin 

and Meshkov conducted their experiments in rectangular shock tubes in which 
two gases were initially separated by a thin membrane with an imposed single- 
wavelength sinusoidal perturbation. The membrane was ruptured by a plane shock 
propagating down the shock tube. Figure 1 shows a schematic representation of the 
geometry. 

Benjamin’s experiments used a Mach 1.2 shock in air incident on an interface 
with sulphur hexafluoride (SF6). The interface perturbation had an amplitude of 
0.24 cm and a wavelength of 3.75 cm. As these experiments were performed at the 
high-altitude Los Alamos National Laboratory we used ambient pressures of 0.8 bar 
and densities of 0.95 gl-’ for air and 4.85 gl-’ for SF6 in our calculations. This 
corresponds to an initial Atwood ratio of 0.67. We used perfect gas equations of state 
with yair = 1.4 and Y S F ~  = 1.09. 
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FIGURE 1. A schematic representation of the geometry in Richtmyer-Meshkov instability experi- 
ments. A shock wave collides with a material interface and is refracted. The reflected wave may 
be either a shock or a rarefaction depending on the fluid parameters and the shock strength. The 
instability consists of the growth in time of pertubations at the material interface. The last frame 
shows a possible late time configutration with a spike of heavy gas being injected into the lighter 
gas. 

Meshkov's experiments were performed with a Mach 1.52 shock in air striking 
an interface separating the air from helium. The perturbation had an amplitude of 
0.2 cm and a wavelength of 4 cm. A pressure of 1.013 bar and densities of 1.2 g1-' 
and 0.167 gl-' for air and helium, respectively, were used giving an initial Atwood 
ratio of 0.76. We assumed perfect gases with y H e  = 1.63. 

The two experiments differed in the type of reflected wave produced. The shock 
refraction in Benjamin's experiment produced a reflected shock, while in Meshkov's 
experiment the refraction produced a reflected rarefaction. In both cases the rear wall 
of the tube was located sufficiently far from the interface that measurements of the 
growth rate could be made before the arrival of the shock reflected off this rear wall. 

The quantities of interest in this study are the amplitude of the perturbations on 
the interface, a(t) ,  defined to be one-half the total interpenetration width, and the 
amplitude growth rate, d(t) .  These are the quantities which were measured in the 
experiments. Additional diagnostics produced from the computations, used in the 
analysis of the perturbations, include plots of the pressure and density fields of the 
flows and of the interface positions as a function of time. We also measured separately 
the flow velocities at the tips'of the heavy gas spike and the light gas bubble. Note 
that u(t)  = (vSpike - vbubble)/2, where u denotes the velocity at the interface. 

The main computational tool is the method of front tracking, which provides 
enhanced resolution and zero numerical diffusion in simulations of the shock accel- 
eration process (Grove 1994; Chern et al. 1986). The main analytic methods are 
the small-amplitude theory (Richtmyer 1960; Yang et al. 1994) and comparison to a 
potential flow model recently derived by Hecht et al. (1994). 

3. Comparison of the linear and nonlinear theories 
If the initial interface perturbation is sufficiently small relative to the Wavelength, 

linearized theories of the perturbation growth can be derived. A simple theory, due to 
Richtmyer (1960), is commonly used to estimate the growth rate of interface perturba- 
tions. Richtmyer begins with the linearized equations for Rayleigh-Taylor instability 
growth rates between incompressible fluids except that the constant gravitational 
acceleration is replaced by an impulsive one. If the perturbation is sinusoidal with 
wavenumber k the perturbation amplitude growth rate in the Richtmyer-Meshkov 
case is estimated as 

u(t) = kAAua(O+) (3.1) 
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FIGURE 2. Convergence of the nonlinear simulations to the linearized solution for small amplitudes. 
A series of calculations was carried out for a set of three initial amplitudes of decreasing size, and 
(a )  shocked air-SF6 and ( b )  air-He interfaces. Amplitude convergence is measured in terms of the 
relative difference between the nonlinear and linear solutions, I(a(t) - arin(t)l/larrn(t)l + la(O-))I where 
a(0-) is the initial amplitude of the pertubation. The horizontal axis is in dimensionless time units 
kcoMot, where k is the wavenumber of the pertubation, co is the sound speed in the air ahead of 
the incident shock and Mo is the incident shock Mach number. One dimensionless time unit is 
equivalent to approximately 14ps for air-SF6 and 12.2 ps for air-helium. 

as long as ka(t)  << 1, where A = (p; - p; ) / (p ;  + p i )  is the Atwood ratio using post- 
shock densities p f ,  Au is the change in translational velocity of the interface due to the 
action of the shock and a(O+) is the shock-compressed amplitude. This is Richtmyer’s 
impulsive model. Note that by starting with the equations for incompressible flow 
one is assuming that compressibility effects are negligible after the passage of the 
shock wave. Following Meyer & Blewett (1972) we use the average of the pre- and 
post-shock amplitudes rather than the post-shock amplitude in the case of a reflected 
rarefaction. 

For ka << 1 one can linearize the Euler equations about the solution of the 
unperturbed problem (Riemann problem) and derive a set of PDE’s in one space 
and one time dimension, along with boundary conditions. This approach is also 
originally due to Richtmyer, who considered the case of a reflected shock (Richtmyer 
1960). More recently this method was extended to the case of a reflected rarefaction 
(Yang et al. 1994). Note that this linearization makes no incompressibility assumption. 

We investigated the convergence of the nonlinear front tracking simulations to the 
linearized system by computing solutions for small initial amplitudes. Figure 2 shows 
the results of these computations for both the air-SF6 and air-He cases. We measure 
convergence in terms of the relative amplitude difference 

where arinear(t) denotes the amplitude as determined by the linear theory of Richtmyer 
and Yang et al. In both cases we obtain good convergence at early times, providing 
an important validation of our calculations. 

In an attempt to explain the discrepancy between theory and Meshkov’s experiments 
Sturtevant (1988) proposed a definition of the post-shock amplitude a(O+) (in the 
case of a reflected shock) which was different from that used by Richtmyer and Yang 
et al. The nonlinear simulations of small-amplitude, early-time Richtmyer-Meshkov 
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FIGURE 3. Pertubation amplitude, a(t), and amplitude growth rate, u(t), of a shocked air-SFG 
interface measured in a frame moving with the interface. This graph compares the results of 
experimental averages, front tracking simulation, linear theory and Richtmyer's impulsive model. 
Also shown are results of a least-squares fit to the front tracking amplitude data over the period of 
experimental observation. Note that the front tracking average growth rate is indistinguishable from 
the experimental value in (b) .  The plus marks (+) show the results of one particular experiment. 

instability presented here confirm that Richtmyer's definition is indeed correct and 
do not support the definition proposed by Sturtevant. 

Figure 3 shows the amplitude and amplitude growth rates as given by the impulsive 
model, numerical solution of the linear theory, nonlinear simulations and experiment 
for the air-SF6 case. We focus on two regions of the growth rate curves where 
divergence between the linear and nonlinear theories occurs. The first region of 
divergence begins at t w 70ps with a reversal in the growth rate b(t) followed by a 
second period of rapid increase. The second region of divergence between the two 
theories occurs shortly after the maximum of h( t )  is reached, at t w 200ps. Here the 
solution to the linearized equations saturates near this maximum value. In contrast, 
the nonlinear solution experiences a marked deceleration at this point. 

The rapid deceleration of the shocked interface at time 200ps is an inherently 
nonlinear and compressible phenomenon. It can be understood in terms of a series of 
re-accelerations of the material interface by secondary shocks whose ultimate origins 
are self-interactions at the reflected and transmitted wave edges. As seen in the 
colour representations of the pressure field in figure 4, curvature in the reflected and 
transmitted waves generates additional shocks via nonlinear self-interaction. At 33 ps 
these waves are clearly seen near the edges of the reflected shock (figure 4a). As 
the interaction proceeds the compression fronts steepen into shocks. These shocks 
collide near the tip of the spike at about 68ps as seen in figure 4(b), producing a 
high-pressure pulse near the interface that causes the growth rate to decrease. This 
deceleration corresponds to the first blip in the growth rate graph figure 3(b). At later 
times the waves emanating from the reflected and transmitted edges produce a series 
of criss-cross shock reflections. At approximately 207ps (figure 4c) a strong pulse 
crosses the interface, leading to the severe (and permanent) deceleration of the bubble. 
That this decrease is due primarily to action at the bubble side of the interface is clear 
from figure 5(a). By time t = 344ps we see that the strong wave action has moved 
away from the interface region and the growth rate curve has smoothed considerably. 
Note the pair of Mach triple points at the far right of this figure. 

Figure 6(a)  shows pressure plots of the solution to the linearized equations and of 
the solution to the nonlinear Euler equations at time t = 195ps, near the time of the 
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FIGURE 4. Pressure plots at a series of times for the nonlinear air-SF6 solution. A cascade of 
shock waves generated by the self-interaction of the transmitted and reflected waves propagates 
back toward the interface and affects the perturbation growth rate at early and intermediate times. 
For reference we have labelled in the first frame the transmitted shock (T), the interface (I) and the 
reflected shock (R). Note that the colour map has been adjusted so that the full range of colour 
occurs within the region of interest (between the transmitted and reflected shocks). The blue regions 
at the left and right have pressures of 0.8 bar and 1.1 bar, respectively. 

most extreme divergence of the two solutions. We call attention to two important 
features of linear solutions: they do not allow the focusing of characteristics and the 
linearization constrains the geometry of the wave fronts to be sinusoidal. These two 
restrictions prevent the production of the additional shocks that are present in the 
nonlinear solution, i.e. there is no cascade of reflected shocks from the self-interaction 
of the transmitted and reflected waves. The linear solution displays a series of 
acoustic waves, but they do not sharpen into shocks and are thus much weaker than 
the corresponding waves of the nonlinear solution. We should note that the strong 
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FIGURE 5. (a) Bubble and ( b )  spike velocities at a shocked air-SF6 interface. the full amplitude 
growth rate shown in figure 3 is d ( t )  = (uspike - Ub,,bble)/2. Note how certain events in the amplitude 
growth rate occur at either the spike of the bubble, but not both. 

waves in the nonlinear solution come in pairs and thus we have two pressure maxima 
as we cross the tube in the x-direction. This is in contrast to the linear theory in 
which all quantities are assumed to have sinusoidal perturbations and, hence, a single 
maximum and minimum value. 

The analysis of secondary waves can be followed further in time to account for the 
plateau in h( t )  during the observation period. We note that during the observational 
window this ringing of waves near the interface subsides. It is at this point that the 
hypotheses of the potential flow model begin to be satisfied, as discussed in the next 
section. 

Figure 6(b)  shows a similar comparison between the nonlinear and linear theories 
for the air-helium case. The figure shows the pressure field at 6 5 p ,  near the time of 
rapid divergence between the growth rate predictions of nonlinear and linear theories. 
As with the air-SF6 case there is a significant amount of nonlinear behaviour that 
is not captured by the linearized theory. Specifically, the waves generated by the 
transmitted shock self-interaction have sharpened considerably and steepened into 
shocks by this time. We observe that high-pressure regions have formed above the 
bubble tips along the edges of the nonlinear simulation plot creating a pressure 
gradient opposing the bubble motion. This gradient is not evident in the linear 
solution. 

4. Late-time asymptotics 
Hecht et al. (1994) have developed a model for bubble growth in the Richtmyer- 

Meshkov instability that is based on three hypotheses : ( a )  incompressibility after the 
passage of the shock over the interface, ( b )  irrotational flow in the region of the 
bubble tip, so that the physics can be described by a potential flow, and ( c )  the 
Atwood ratio is near 1. Their model predicts an asymptotic single bubble velocity 
given by 

1 
3kt/2 Vbubble = ~ 

where k is the wavenumber of the perturbation and t is the time. Note that this 
velocity is measured in a frame moving with the velocity of an unperturbed interface. 
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FIGURE 6. For caption see facing page. 
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FIGURE 7. Computation of the bubble and spike velocities at late times for the case of an air-SF6 
interface. For the bubble velocity we show a comparison with the asymptotic value predicted by 
the potential flow model, 2 / (3k t ) .  For the spike velocity we show a comparison to a fit from 500 ps. 

FIGURE Log time us. log velocity for bubble and spike velocities. The sp---e velocity is fit by a 
line while the bubble velocity is shown with a reference line with slope -1 for comparison with the 
decay rate predicitons of the potential flow model. 

Figure 7(a) shows Ububble from the nonlinear simulations compared to equation (4.1). 
Figure 8 shows that the decay rate of the numerical simulation is of the same 
magnitude as that predicted from the theory, although it appears slightly lower. We 
note that the post-shock Atwood ratio is only 0.70. We also observe an offset between 
the potential flow and simulation velocity curves. Note that this model applies only 
to bubbles and not to spikes. We also emphasize that the effects of compressibility 
remain important at times significantly later than the time of passage of the initial 
shock through the interface. Indeed, the velocity offset is likely to be due in part to 

FIGURE 6. A comparison of the linear and nonlinear solutions. (a) air-SF6 at t = 195ps. We see 
that the linear solution does not show the strong wave action that affects early and intermediate 
time growth rates in the nonlinear solution. (b) air-helium at t = 65ps. Again there is significant 
nonlinear wave activity which is not captured by the linearized solution. In both frames we have 
again labelled the transmitted and reflected waves as well as the interface. In the air-helium case 
we have labelled the leading and trailing edges of the reflected rarefaction by (R). 
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FIGURE 9. (a) Pertubation amplitude, a(t) of a shocked air-helium interface. The figure compares 
the results of simulation, linear theory, impulsive model, and experiment. (b)  Enlargement showing 
early-time agreement between the front tracking results and those of Meyer and Blewett (+). 
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FIGURE 10. Pertubation amplitude growth rate, u( t ) ,  of a shocked air-helium interface. The figure 
compares the results of simulations (including those of Meyer & Blewett), linear theory, impulsive 
model and experiment. 

the fact that the early-time compressible wave interactions discussed in the previous 
section are not properly included in the incompressible potential flow model. 

It is interesting to note that the spike velocity can be fit by a power law. Figure 7(b) 
is a plot of uspike and a fit of the data given by uspike = 510t-0~5s. As seen in figure 8 
the fit to the data is excellent from time t = 500ps to the end of the simulation. 
This decay in bubble and spike velocities should be contrasted with the single-mode 
Rayleigh-Taylor instability, in which the bubble approaches a constant velocity while 
the spike undergoes constant acceleration for an Atwood ratio A = 1 and approaches 
a constant velocity for A < 1. 

5. Comparison to experiments 
Figures 9 and 10 show a comparison of simulations with experiment for the air-He 

case. The numerical simulations give growth rates 60% higher than those reported by 
Meshkov (1970). We reiterate that the full scale simulations of the air-He experiment 
do agree with the linear theory at small times. 
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We compared our computed growth rates to simulations by Meyer & Blewett (1972). 
These authors reported growth rates 200% higher than thoses measured by Meshkov. 
However, Meyer & Blewett reported growth rates for times earlier than the times of 
observation in Meshkov’s experiments. Referring to figures 9(b) and 10, we see that 
the time interval for which Meyer & Blewett reported growth rates corresponds to 
the peak in h(t) .  We observe that by the times for which Meshkov measured the 
growth rate there had been significant decay in this quantity. This may account for 
some part of their overshoot. 

Comparison of simulations to experiments in the air-SF6 case results in excellent 
agreement for the growth rates (see figure 3 and Grove et al. 1993). However, there 
is a significant offset in the value of the absolute amplitude of the perturbations. 
The offset between the computational and experimental values for the perturbation 
amplitude is even more severe in the air-He case. This may be due to mass diffusion 
in the experiments, which is more significant with an air-He interface than with 
air-SFs. 

The improved agreement between the front tracking simulations and experiment 
is due to the sharp resolution of the interface. Tests using untracked shock waves 
have shown that the growth rates are very similar to those found in the fully tracked 
simulations except at early times. This is consistent with the analysis given in 93 of the 
wave action generated by shock self-interaction. Differences in the transmitted and 
reflected shocks will be felt most strongly when the waves are closest to the interface 
and thus the effects of an untracked shock will be most significant at early times. 

We know of no model that provides quantitative estimates of the effect of the 
membrane in Meshkov’s and Benjamin’s experiments. We have shown that it is not 
necessary to invoke membrane effects to achieve agreement with Benjamin’s measured 
growth rate. This does not mean membrane effects have been ruled out. They could 
well have an effect on the early-time behaviour (not covered in Benjamin’s data) and 
possibly account for the residual discrepancy in the amplitude. The situation is of 
course more open in the Meshkov experiment. The best way to resolve the issue of 
membrane effects is to perform Richtmyer-Meshkov instability experiments in which 
membranes are not used. 

A detailed discussion of membrane effects is beyond the scope of this paper. We 
note, however, that the computational approach to estimating membrane effects is 
not promising. Analysing the deformation and fragmentation of a thin elasto-plastic 
membrane would add severe demands to an already demanding computation. There 
is no established and benchmarked methodology for modelling the fragmentation of 
such a membrane. Even if one did come up with a model of membrane dynamics, 
it would be very difficult to know that it is correct. Since such a model is likely 
to require phenomenological parameters : simply fitting these parameters to obtain 
agreement with experiment would accomplish very little. 

6. Numerical validation 
We conducted several tests to validate our numerical methods. Convergence to the 

linear theory at small times was discussed above. 
We also investigate convergence under mesh refinement. The air-He amplitude 

growth rates have converged at a resolution of 100 zones per wavelength (figure 11). 
The results for the air-SF6 case are somewhat more complicated. The bubble velocity 
converges at a resolution of 125 zones per wavelength, as shown in figure 12, while 
the spike velocity continues to increase as the mesh is refined. Several factors may 
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FIGURE 11. Mesh refinement tests for the air-He simulations. 
We see convergence in the growth rate by 100 zones per wavelength. 
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FIGURE 12. Mesh refinement tests for the case of an air-SF6 interface. Results for computations at 
resolutions of 62, 125, and 250 zones per wavelength are shown (a) Bubble velocity; (b) spike velocity. 
The bubble velocity has converged but the spike velocity increases with increasing resolution. 

contribute to this behaviour. First, there is considerably more wave activity near the 
tip of the spike than at the tip of the bubble which may require more resolution 
to achieve convergence. In addition, the theoretical convergence of the numerical 
solution naturally occurs in the L' norm rather than the L" norm being measured 
here. The results shown in figure 3 for air-SF6 are found using a grid of 125 zones 
per wavelength since we do not have the computational resources to run the 250 
zone simulation to late times. However, it is clear from the results of the shorter 
simulations in figure 12(b) that the difference between spike velocities at 250 zones 
and 125 zones is approximately half the difference between 125 zones and 62 zones, 
which is consistent with first-order convergence near the fronts. To estimate the error 
in the 125 zone simulation we note that for a first-order scheme the reduction in error 
achieved by refining the grid from Ax = h to Ax = h/2 is the same as the reduction 
from Ax = h/2 to the value under full mesh refinement, i.e. Ax --+ 0. Since the change 
in spike velocity from 62 zones to 125 is approximately 10% we estimate that there 
is an error of 10% in the spike velocity calculated at 125 zones. Because the changes 
in the full amplitude growth rate-(uspike - vbubble)/2-are one-half the changes in the 
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spike velocity, and given that the bubble velocity has converged, we conclude that 
the error in the growth rate at 125 zones is approximately 5%. 

We also studied the influence of artificial viscosity and numerical surface tension 
on the amplitude growth rate. It is found that the growth rates are insensitive to these 
parameters. 

7. Conclusion 
The analysis of the simulations shows that compressibility and nonlinear wave 

interactions play an important role in the early-time development of the Richtmyer- 
Meshkov instability, up to and including the time measured in experiments. These 
wave interactions are not captured in the linearized theories commonly used to 
estimate perturbation growth rates. In addition the late-time behaviour of the 
interface, after compressibility effects have subsided, agrees qualitatively with the 
model of Hecht et al. 

Front tracking and the proper timing of growth rate measurements lead to improved 
agreement between experiment and simulation perturbation growth rates. It appears 
worthwhile to study the effect of mass diffusion on the early-time growth of the 
perturbations to aid in understanding the still unresolved difference in amplitudes. 
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